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Laser generated relativistic positrons have

exciting properties

 Fundamental pair plasma science at the relativistic regime

» Positron tomography for diagnosing high-energy-density plasma dynamics
* Pico-second gamma ray source at 511 keV

* New source for accelerators and positron science & applications

» Relativistic pair plasma jets for lab astrophysical studies

2008 Chandra image of the nearby
galaxy Centaurus A shows the effects
of an active supermassive black hole
as opposing jets of high-energy
particles extending to the outer
reaches of the galaxy.

Credit: NASA/CXC/CfA/R.Kraft et al
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Why possible: advances in laser technology enable

intense lasers to produce electron-positron pairs
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Lasers create positrons via two processes using

targets with high atomic numbers
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Maximizing the energy into >MeV electrons is the key to increase the
efficiency of positron production using lasers
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We have used and will use a number of large laser

facilities to do the relativistic pair-plasma research

Titan laser (LLNL)
1-10 ps, 100-350 J
5-10 shots/day

~ =" OmegaEP (LLE)
1-10 ps, up to 1.3 kJ
5 shots/day

Gekko (ILE)
4 beams, 1 ps, ~1 kJ
Shots in 2012

NIF ARC (LLNL) 2 W~
1-10 ps, up to 10 kJ '! . AN
Shots in FY13 & 14
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Our results show that intense lasers produce very

high flux, relativistic pairs in very short time

Titan positron data image (Au, 1mm) | | Omega EP positron data #5082
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In this shot, about 10° positrons
were observed in the detector, and
about 10"° in 1 ps 120 J shot

Chen et al., PRL 2009
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Pair number: 1010 - 1012 Peak energy: 4 - 20 MeV
Pair flux duration: ~10-100 ps E conversion: >2x10-4
Pair rate: ~102%2 /s Peak flux: >102° cm-2s-1
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Positrons are accelerated by the target sheath

electric fields 10s MeV

Electron and positron spectra Positron accel. vs. target sizes
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Positrons are accelerated at the same time by E-field, which shift the
whole spectrum up in energy
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Laser produced relativistic pairs form jets at the

back of the target

Laser pair angular distribution

lllustration of experimental setup
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Jet angular spread:

~10-20 degree

Chen et al., PRL 2010

The jets are shaped by the E and B fields of the target. Its direction is
controlled by the lasers and target.
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Laser produced positrons have a relativistic, quasi
mono-energetic distribution due to sheath acceleration

Quasi mono-energetic positrons
20 - A - 20 mm target; 312J, 10 ps
B - 6.4 mm target; 130J, 1ps
— C - 2 mm target; 305 J, 10 ps; 7J LP
> D - 2 mm target; 280 J, 10 ps
; E - 2 mm target; 323 J, 10 ps
~ 15 F-2mm target; 812 J, 10ps "
m get
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Chen et al., PRL 2010

Non-neutral, high density, relativistic pair plasma jets have been
made using lasers
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Laser produced electron-positron pairs scale up with

drive-laser energy

Positron jet vs. electron jet density

Positron number vs. laser E
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relativistic pair plasmas

This feature is critical to future laboratory experiments using
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-
Encouraging new trend appears when the laser energy
exceeded 1 kd (Omega EP experiments on Sep. 7)

Raw positron spectra from Omega EP Preliminary: positrons vs. energy
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Is this an indication of non-linear scaling of positron
generation at E > kJ?
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EPPS and GCS have been designed, qualified and
tested on OMEGA EP (TIM)

Gamma Crystal
Spectrometer

Electron-positron-
Au target proton spectrometer

ARC (O35T)

« EPPS provides absolutely calibrated electron/positron/proton
spectrum for a large energy range (0.01 MeV - 400 MeV)

« GCS has energy coverage between 20 keV — 700 keV

The existing design can be improved for use on a NIF DIM
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Soon we will access the conditions of some of the
most energetic events in the universe in the lab
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-
Encouraging new trend appears when the laser energy
exceeded 1 kd (Omega EP experiments on Sep. 7)

Rel. Pair beam ‘ — Normal plasma ‘

Exponential growth (oblique mode) Saturation (two-stream mode)
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Anatoly Spitkovsky (Princeton University)

Induced EM instabilities may generate magnetic fields in
intergalactic space around Active Galactic Nuclei
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We will use laboratory pair jet interaction to

understand astrophysical phenomena

Gamma-ray-burst (GRB) physics model Jet collision creates shock
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| FORMATION OF A GAMMA-RAY BURST could begin |

either with the merger of two neutron stars or
with the collapse of a massive star. Both these
events create a black hole with a disk of material
around it. The hole-disk system, in turn, pumps
out a jet of material at close to the speed of light.

Shock waves within this material give off radiation. | JET COLLIDES WITH

“AMBIENT MEDIUM
[external shock wave)
BLOBS COLLIDE GAMMA
(internal shock RAYS

SLOWER wave)

FASTER_ BLOB
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Internal shocks give off radiation/particles
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CNEA Anatoly Spitkovsky (Princeton University)

Colliding jets can mimic the internal shock of GRBs,
allowing study of how energy is transferred to particles
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We will use laboratory pair jet interaction to

understand astrophysical phenomena

Gamma-ray-burst (GRB) physics model

FORMATION OF A GAMMA-RAY BURST could begin

either with the merger of two neutron stars or
[ with the collapse of a massive star. Both these
! events create a black hole with a disk of material
NEUTRON STARS around it. The hole-disk system, in turn, pumps

out a jet of material at close to the speed of light.
s Shock waves within this material give off radiation. | JET COLLIDES WITH
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Two-beam pair jet interaction experiment
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Relativistic e+-e- plasma jets interact

Colliding jets can mimic the internal shock of GRBs,
allowing study of how energy is transferred to particles
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« We have produced copious,
relativistic positrons using
high-energy, short-pulse lasers

Summary

Laser pair plasmas can simulate real events

 Many exciting applications can
be found using this new
source, among them the
relativistic pair plasma creation

X-ray image of relativistically moving jets of electron-

positron pair plasma powered by a supermassive « Laser positron experiments will
black hole in a nearby galaxy Centaurus A. We may create and let us investigate
study this using the laser created relativistic pair jets astrophysically-relevant pair

to recreate relativistic collisionless shock waves that
are thought to energize particles in astrophysical jets.
(Chandra image credit: NASA/CXC/CfA/R.Kraft et al.

plasmas
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How: high energy ps-lasers laser is the key

component in the experimental setup

LLNL Titan two-beam laser

Experimental setup

2w, 50 -150J,1-3 ns
Spot: 600 um

1w, 120 - 250 J
0.7 -10 ps
Spot: 8-10 um

Timing for the two beams Targets

Chen et al. RSI 08

Al, Cu, Sn, Ta, Au
Thickness: 0.1 -
3.1 mm
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